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INTRODUCTION 0/

It is well known that the underlying mathematical formulations in sytems theory and
signal processing are quite similar [1,2]. In particular, the transfer function R(-1 with
the sequence of unit impulse responses {h,}, plays the central role of these two important
areas of research. In the ideal situation when the sequence {h.} is noise-free, then it is very \ -
easy to obtain the rational function model H(z). One method is the use of Pad6 approxi-
mants. This method, being linear, is particularly simple. In systems theory, however, the
dimension of the system, which agrees with the degree of the denominator of the rational
function H(z), although finite, may be unreasonably high. Hence, many model reduction
methods have been intro(-uced in the literature. All these methods amount to approxima-
tion of the rational function H(z) by another rational functi(:l with a much lower. gree
(or lower system dimension). However, only one method staidz, out to be the mos.. desir-
able. This method, known as optimal Hankel-norm approximation, has three outstanding
features: first, the lower-degree rational function approximant is uniquely determined by
an optimal criterion; second, this rational function approximant is guaranteed to be sta-
ble; and third, the exact measurement of the error of approximation can be determined.
The mathematical description and derivation of the optimal Hankel-norm approximation
is especially intriguing. Based on the infinite-dimensional theory due to Adamjan, Arov,
and Krein [3], better known as AAK, it relates best rational approximation in the supre-
mum norm and optimal approximation of the corresponding Hankel operator by Hankel
operators with specified finite rank. The intimate relation between rational functions and
finite-rank Hankel operators is governed by the beautiful classical result due to Kronecker
(cf. Ref. 4); and the relation between best rational approximation in the supremum norm
and optimal Hankel approximation in the operator norm is initiated by a fundamental re-
sult due to Nehari [5]. The AAK theory may be considered as a generalization of Nehari's
theorem in that the singular values are used to give the exact measurement of the error of
approximation. Note that the first singular value agrees with the spectral radius, which is
the same as the distance in the supremum norm of the transfer function from the Hardy
space H' of bounded analytic functions in the open unit disc. This is the main theorem
due to Nehari.

Unfortunately, the AAK theory is very deep, and there seems to be no easy wayto find the AAK optimal approximants. Nevertheless, when the transfer function is al-
ready a rational function, S.Y. Kung [61 gave an algorithm to compute the AAK optimal
approximation. This method is called H°o-control (or systems reduction via Hankel ap-
proximation) in systems theory. However, even in the absence of noise, impulse response
data from underwater acoustic transducers do not yield a rational model; and in general,
data obtained from a rational model are contaminated with noise. Hence, for all practical
purposes, the transfer function to be identified is not in the form of a rational function, and
a rational approximation criterion is necessary. Recently, Chui, Li, and Ward [7,8] proved
that if the truncated Hankel operators are used in place of the original Hankel operator
(which represents the transfer function to be identified), then the AAK approximants of
the truncated operators converge to the AAK approximant of the desired transfer func-
tion. We will derive a computational procedure based on this convergent result. In other



Chui

words, if a sequence { h } of unit impuise responses is given, we will derive a computational
scheme to find the stable ratioial models that are optimal in the sense of best Hankel-norm
approximation.

KRONECKER'S THEOREM

Let { h,,}, n = 0, 1,..., be a causal sequence of unit impulse responses. Corresponding

to this sequence, we associate two quantities: the z-transform, or symbol,

H(z) = Z hz-n, (1)
ricO

and the infinite Hankel matrix FH = [hi+t-i], 1 < i,j < oo, or

hi h2 h3"'

Vn= h2 h3 (2)
h3 "

Note that we do not include h0 in the definition of rH in (2) simply because of the standard
convention in systems theory. The constant h0 is easy to determine since it is the limit of
H(z) as z tends to infinity.

The rank of the matrix FH is defined by the number of linearly independent columns
of Fj; or equivalently, it is the dimension of the range of rH on £2, where £2 denotes the
space of square-summable sequences. The following classical result due to Kronecker can
be found in [4]. A proof is included in the Appendix for easy reference.

Theorem 1. (Kronecker)

The infinite matrix FH in (2) has finite rank if and only if the symbol

00

zhnz- (3)
n= 1

is a strictly proper rational function in z; that is,

00

E~ h, z -n P(z) (4)
n1 Q(z)

where P(z) and Q(z) are relatively prime polynomials in z with degree (P) < degree (Q).
Furthermore, in this situation,

rank(rH) = degree (Q). (5)

In fact, if rH has finite rank k, say, then the first k columns of rH are linearly
independent, and there exist k constants c1,.. . Ck, such that

2
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k

yk+t=Z ctji+t-1, e=1,2.. (6)
ti

where -ti denotes the ith column of 17H. Furthermore, the finite square Hankel matrix

hi h2 ... hk 1
Hk = h2 ...... hk-1 (7)

... .... .,.... . .... .

h ... ... h2k-1
which is a finite square truncation of rH, is nonsingular. For more details, see Lemma 2.1
and its proof in [2] or the Appendix in this report.

THE ARMA MODEL

A sequence {h,}, n = 0, 1,..., is said to represent an ARMA model if its z-transform
H(z) defined in (1) is a proper rational function in z with all its poles lying in the open
unit disc Izi < 1, namely:

ccz , E n-n bo + blz - 1 +.. + bM z - M

H(z) E h,, = b-bi +N'~ (8)
n=O 1 + alz- 1 +... + aNz - N

bozP + blzP- ' +.. + bp P(z)

zP+alzP-1 +... +a Q(z)

for arbitrary M, N > 0, where p = max(M, N), bM+l "bp = 0, aN+ ap
0,

degree(P) degree(Q) = p, (9)

and

H(z) is analytic in 1zI 1. (10)

If P(z) and Q(z) have no common factors, we say that the representation (8) of H(z) is
in coprime form. If (8) is in coprime form, then (10) is equivalent to

Q(z) # 0 for all Iz_ >1. (11)
We remark that (10) is also equivalent to

Ih < oo. (12)

In the following, we derive an algorithm to yield the feedback sequence {a,, } and feed-
forward sciicz, ce {b,} in (8) from h bequencc of unit impulse responses {h,}, assuming
that its z-transform H(z) is known to be an ARMA model.

3
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Algorithm I. (ARMA realization)

(10) Solve for a,, . . . , ap in the linear matrx equation:

hi h2 ... hP ap [hP ]

h- . ... hP+1 ap-1 + =0 ( 3
... ]....... .[..] [+0. (13)

hP... . h2p-1 a, hp

(20) Compute bo,..., bp by matrix-vector multiplication in:

1 0 ......... 0bo •• ho

b 1(14)

apal 1

where a,,..., ap have been computed in (13).

Remarks: From (7), with k = p, we see that the coefficient matrix of the matrix equation
(13) (which is a finite Hankel matrix) is nonsingular. The coefficient matrix in (14) (which
is a finite Toeplitz matrix) is a lower triangular matrix with unit diagonal.

Proot: Multiplying Q(z) to B(z) in (8), we have

(ho + hjz - 1 + ... )(zP + a,zP- +... + ap) = bozP +... + bp. (15)

Hence, equating the cocfficients of zP,zP-1,... Iz, 1, we have (14); and equating the coef-
ficients of z-1 ,..., z-?, we have (13).

THE HANKEL NORM

As mentioned in the Introduction, we must assume for all practical purposes that
H(z) is not a rational function. Hence, we usually start with a sequence {h,} of unit
impulse responses which satisfies E IhI < oo. In fact, in most situations, we only have
input/output information {un}/{vn}. In this case, we write

E Vre-JM
n ;

H(e' m , (16)

EU

and numerically compute the unit impulse responses h, by applying DFT to the integral

h, - H (e ) c wdw. (17)

4
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We do not dwell on this, since it is expected that other more efficient procedures will
be introduced in our forthcoming report [9], but only remark here that any numerical
approximation method for determining {h,} from (17) produces an error, which again
necessarily results in a non-rational model H(z), z = e .

Now, as a result of the condition E Ih,,I < co, we have a bounded function H(z) on
the unit circle IzI = 1. Hence, we may write

H(z) = Ha(z) + H,(z), (18)

where

Ho,(z) h (ZE hn) (19)
( --- )0-a n= - -

is called the analytic part of H(z) and

H, (z) = ( hn Z-n) 1 hn Z-n (20)

is called the singular part of H(z). Hence, the Hankel matrix F1 corresponding to H(z).
as defined in (2), is uniquely determined by the singular part H,(z) of H(z), while the
analytic part Ha(z) of H(z) does not influence FH at all. Now, under the hypothesis
E Ih, I < cc, which is equivalent to BIBO (bounded input - bounded output) stability, we
may conclude that 1H is a bounded linear operator on the space [2 of all square-summable
sequences, with the operator norm defined by

1I17H1 = sup{fllrHxII2: IIXI112 = 1}, (21)

where, for x = (x , X2, ... ),

i= 2

IIxII,2 () , 12) (22)

The finiteness of lIFHII follows from Nehari's theorem to be stated below; and it will be
seen that, in fact, we have

EIh.I 12 :51rIIrl _< E 1h.I. (23)
n=1 n=1

We will verify (23) after we state Nehari's theorem; but at this point it should be noted
that IIrHjI is the spectral radius of the operator FH, or equivalently, the largest singular
value of r H.

The operator norm of rH in (21) is also called the Hankel norm of the function H(z)
and will be denoted by

IIH(z)llr = 1rH II. (24)

Actually, this is not a true norm but only a semi-norm since

5
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IIH(z)Ilr = IIH(z) - g(z)jr (25)

for any function 9(z) E H'. Here and throughout, H' denotes the space of all bounded
analytic functions in IzI < 1. It is also called a Hardy space. The importance of this
observation is that it provides a motivation of the celebrated theorem due to Nehari [5].

Theorem 2. (Nehari)

Let H(z) be a bounded function defined on the unit circle IzI 1. Then

IIH(z)lIr = inf IIH(z) - 9(z)llLo(Izl=l). (26)
9EIH0Q

We now derive the inequalities in (23). First, note that rH FH,. By (26), with
g(z) = 0, which is certainly in H', we have

I1FHIj = IirH.11 = IIH,(z)llr < IIH(Z)llLo(jzl=l) (27)

= sup Z h~z-
1z 1=

1 E~
n=1

E IhnI.
n=1

This verifies the upper bound in (23). To verify the lower bound, let el (1,0.0....).
which has unit e2 norm so that from the definition (21), we have

IIFHII IIrHel 11 (2s)

= 1(hi, h2,. . )Ilt2 E Ihn 12

In the above formulation, we have also established that the Hankel norm lies between the
L'(Izl = 1) and L 2 (IzI = 1) norms. Recall that

IIfllLo(z=1) = sup If(z)l, (29)

which has already been used in (26) and (27), and that

llfll 2II=I (= j If (e)l 2dw  (30)
Indeed, by the ioiiietry between e2 and L2 (Izl = 1) we have the lower bound, and by the

application of Nehari's theorem as in (27) we have the upper bound; that is,

IlsIIHL1(,Iz-=) -< IIHIir ___ IIH, IIL (,I=]). (31)

6
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SINGULAR VALUES AND SINGULAR VECTORS

Let FH be an infinite Hankel matrix as defined in (2). Under the assumption that
h < oc, we have seen that rH can be considered as a bounded linear operator on (2.

or simplicity, we will call 1H a Hankel operator. Since all Hankel operators are symmetric.
the adjoint of H is its complex conjugate

h2 h3 (32)

In particular, for a sequence of real-valued unit impulse responses, 17H is self-adjoiit In
ase, PFt-fH is non-negative definite and has non-negative eigenvalues s2, 2 . with

S1 _ S2 > ... > 0, which are aranged in nonincreasing order, listing al multiple occur-
rences. Let IIHI denote the non-negative square-root of FHfH. Note that although L111
is Hermitian, it may not be Hankel; but this is not important in the following discussions.
Clearly, the eigenvalues of IrHI are si,s 2 , . . .. . Corresponding to each s,,, let x,, be an
eigenvector of PrHI; that is, x,, 5 0, x, E j2, and

IrHIXn = s"x". (33)

Let U be an unitary operator on f2 such that

IH = UIPHI 54)

(cf. Ref. 10). Then by defining

{ n x n ( 3 5 )
r =Ux,,

we see that

{ rHn = Snln 
(36)rH77n = Sn~ n .

Indeed, it is clear that

rH . = UIPHK (37)

= SnU{n = Snr7n

and

FH7n = fH 17 n (38)

= (UTPH)T fl

= IrNI n = Pr,,1Xn
= snxn = snn.

7
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We will call s, a singular value (or s-number) of PH and will call the pair ( , rj,) a
singular vector pair (or Schmidt pair) of rH relative to sn. Let us assume, without loss
of generality, that the eigenvectors {xI,x 2 ,...} of PHI corresponding to the eigenvalues
{sI, s2,... are orthonormalized, so that the infinite matrix

V = [xx2 ... ], (39)

with Xn as its nth column, is a unitary operator in e2 . Then, by the definition of eigenvalues
and eigenvectors, we have

IrHIV = VE, (40)

where

F,= diag(sI, S2,...,)0 .s2(41)

is the diagonal matrix of the singular values of rH. Hence, it follows from (34) that

PH = (UV)EV* (42)

where V* is the adjoint (or complex conjugate of the transpose) of V, and both (UV) and
V* are unitary operators. The decomposition (42) is called a sin( "r' value decomposition
of PH. (For finite matrices, see Ref. 11.) Another formulation ot (42) is the so-called
Schmidt series representation

00

FH = ZSn7nl, (43)
n=1I

which follows from (42) and (35); where again, C denotes the complex conjugate of the
transpose of the vector i,, so that 7,nn is a rank-1 operator on 2. That is, rH is the
(strong) limit of the sequence of finite sums

p

ZSn7n n (44)
n=1

(which are rank p operators), as p -+ oo. "Strongness" here means convergence in the
operator norm defined in (26). However, although the operators in 44) are finite-rank
operators that approximate FH, they are not Hankel operators, and consequently, are
useless for our purpose of finding rational models for H(z) (see Theorem 1).

AAK THEORY

Let H(z) and FH be defined as in (1) and (2) where the sequen e { h,, } of unit impulse
responses is assumed to be in V1; that is,

00

E IZhI < oc. (45)
n--1
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Let si > s2 > > 0 denote the singular values of FH with corresponding singular
vector pairs ( j,71),(2,72),..., respectively. Since si is the largest singular value, it is
the spectral radius of F, so that we have s, = IIFHII. Hence, as a consequence of Nehari's
theorem (d. Theorem 2), we have

si = llrHII = inf IIH(z) - g(z)llL.(jxf=1). (46)
gEH OO

That is, t6e first singular value si yields the exact measurement of the error of uniform
approximation on lzi = 1 of H(z) from the Hardy space H'. That is why Nehari's result
is considered to be the starting point of the area of H'-control (cf. Ref. 12). To yield
rational models, we introduce the notation:

-;= P (z): degP(z)<degQ(z)<p, Q(z)# 0 for I> (47)
IQ(Z)I

where P, Q axe polynomials. That is, IZ is the collection of all stable proper rational
functions of degree at most p. Also, let

HPO = HOO + 1Ps (48)

denote the collection of all functions f(z) = g(z) + r(z) where g(z) E H'c and r(z) E iz;.
To unify notations, we set

HO=H0 , Z={0}. (49)

To pose the approximation problem in terms of operators, let GP denote the collection of
all bounded Hankel operators with rank < p. Hence, Go consists only of the zero matrix.
By Kronecker's theorem (cf. Theorem 1) and the equivalence of (11) to the boundedness
of the corresponding Hankel operators, we may identify 1? with Gp.

Hence, Nehari's theorem (cf. Theorem 2) formulated as in (46) can be written as:

si = inf llrH - All = inf llH(z) - g(z)llLo-(zj=i. (50)
AEGo gEHOO

Here, since Go = {0}, the first equality only says s, = lIIHII. The celebrated result of
AAK in [3] ;s to generalize (50) from p = 0 to an arbitrary positive integer p.

Theorem 3. (AAK)

Let H(z) be any function in L (Izl 1) and p be any non-negative integer. Then

sp+i = inf IIPH - All inf IIH(z) - g(z)L (Izj=1). (51)AEG r  gEHOO

Hence, the (p + 1)st singular value of PH gives the exact measurement of the distance
in uniform norm on IzI = 1 of H(z) from HO. In addition, since FH is a compact operator
under the assumption (45), we have

3P+1 P 0 as p --+ o (52)

(cf. Ref. 13). That is, we can approximate H(z) as close as we wish from HP. So, if
the Hankel norm defined in (24) is used, then in view of (25), the H' or analytic part of

9
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the approximant is irrelevant. Thus, by taking the singular part [ ],, we obtain a stable
rational model of H(z)

To be more specific, we exhibit the formulation of the best Hankel-norm approximant.
The following notations are needed. Let

(P+1)+i)1) (P+1)
= (U1  ,U2  I...), t p+1 = (vi )V 2  (53)

be a singular vector pair of FH corresponding to the (p + I)st singular value sp+1 of "H.

Define the analytic and singular functions:

( 00

,---1(54)
00

~17P1(Z) V zI
j=1

respectively, and set

p(z) = H(z) - sp+, 7P+i(z ) .

In the AAK paper [3], it is proved that p(z) is in HP' and solves the optimal approximation
problem (51) in the sense that

sp+= IIH - r,, = IH(z) -p(Z)joo(jzJ=1). (56)

As we remarked above, since

= F(57)

where [gp]s denotes the singular part of p, we may conclude that

Sp+i = 11H - [ pj.,Jr = inf 11H(z) - 9(z)llr; (58)
g E H0

and this means that the singular part of p(z), defined by

Rp(z) = [ p(z)]o, (59)

provides an optimal stable rational approximation of H(z) from 1Z. The proof of this result
is very deep; but if H(z) itself is also a rational model, a simpler derivation is accessible.
We will outline this simpler version in the next section. The reason for doing so is that
S.Y. Kung's model reduction algorithm, which will be discussed in this report, is based on
this derivation.

DISCUSSION OF AAK'S THEOREM

We will outline the proof of AAK's theorem (d. Theorem 3) for the special case
where H(z) = y] hnz - has real coefficients and the singular part [H(z)], = _1 hnz-"
of H(z) is a strictly proper rational function, namely:

10
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[H(z)], = H,(z)- PM-I(z) (60)

with degree (PM-1) < degree (QM) = M, and PM_(z),QM(z) being relatively prime.
Note that H.(z) E TZ since FH is a bounded Hankel operator.

Let I A} i1 be the (necessarily non-zero) eigenvalues of the real rank-M Hankel matrix
PH. We arrange these eigenvalues in such a way that JhiA = si; hence,

JAI I IA2 1 .- AMI > 0, (61)

where si is the i t h singular value of rH. (Note that since rH is real, THrH F,; and
this gives s? = A?.) Let xi be the eigenvector of FH corresponding to Ai, i = 1,... ,M.
Then since si = Ai I= Ai(sgn Ai), we have

H = Si, 
(62)fy77i -- SiCi

where i = xi and ti = (sgn Ai)xi. That is, (xi, (sgn Ai)xi) = (iti) is a singular vector
pair of FH relative to the singular value si = IAil.

Let p < M, and our goal be to replace H,(z) = PMI(z)/QM(z) by a rational function
in IZ. The notations introduced in (53) and (54) are now used.

Step 1. We claim that

H(z) = H.(z) ++(z) - sp+ir-+,(z) (63)

is analytic in Izi < 1; that is [H(z)]. = 0. To see this, first observe that

sp+lirp+l= hp+ip+l (64)

so that

00

Sp+ 77, ( +Z (z) =)Ap+I(65)

Second, it is clear that

ShjutP+)zi1 (66)
i=1 £=i

00 00 00 00

~hi+t-Iu+')z-i + Zhe +j 1) z-I+,
i1 =+ =11

where ht = 0 for e < 0. Finally, from FH~p+] = Ap+ 14+i, we have

hi+t-jutP+I) = AP+ 1ui , i=1,2 (67)

11
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Hence, we may conclude, by applying (64), (65), (66), and (67) consecutively, that

[H(z)], = [H,(z)++1 (z) - sp+17,+,(z)], (68)

= [H.(z)4P+1 (z) - Ap~i 5tP+'z-]8
i=1

00000 00 00
(P+1) Sh (p+l) i-1 - 5 (phi+t.-ultf z - +  +t-i+)] z A z-

i=1~t+ P+ i1 =1i=

=11 C=1

= 5ht-i+lu(j 1 I zi-

hiu(P+l)zt-i-1 =0.

Step 2. We claim that the function

B(z) = QM(z)r+i(z) (69)

is a polynomial with real coefficients and of degree < M - 1.

It is clear that B(z) has real coefficients. We first observe that since PI-I(z) and
++,(z) have only positive powers, we have

[PM= 0. (70)

Hence, it follows from Step 1 (d. Eq. (63)) that

[B(z)]8 = [QM(z)7;+,(z)]8  (71)

1
- [PM_,(z)++i(z) - Sp+QAf(z)rlp+l(z)]5sp+l

- [QM(z){H.(z)++i(z) - sp+i77P_+j(z)}],
Sp+ 1

1
-S [QM(z)H(z)l = 0.Sp-+-1

That is, B(z) is analytic and by the definition (69), it must be a polynomial. Now, since

-im Bz)r(z) = t-I(Z)=0, (72)1z--00 QM(Z) Z0

we have degree (B) < degree (QM), so that the degree of B(z) is at most Al - 1.

12
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Step 3. Let B*(z) and Q*M(z) be the reciprocal polynomials relative to B(z) and QM(z),
respectively; that is,

B*(z)=zM-1B( 1  ad Q f(z)=zZMQN(!). (73)

We claim that the function

PM-(z)B*(z)- Ap+Q* (z)B(z) (74)
QM(z)

is a polynomial with real coefficients and of degree < M - 1.

Indeed, since PMI(z)B*(z) - Ap+iQ*M(z)B(z) is a polynomial of degree < 2M - 1,
we may use partial fractions to write

PM-l(z)B*(z) - Ap+iQ* (z)B(z) C(z) D(z)- + (75)
QM(z)Q*M(Z) QM(Z) QM(Z)

for some polynomials C(z) and D(z) of degree < M - 1. However, since QM(z) has all its
zeros in Izi < 1, its reciprocal polynomial QjM(z) has all its zeros in Izi > 1, so that

001 - ZM 1 - E qiz- (76)

QM(Z)QM() =

for some qo, ql,.... Hence, if degree (D) < M - 1, we have

[D(z)] = [z M D(z) qiz-] (77)[QM(z)J i=0
00

z M D(z) E qz- D(z)

i=0 MZ

On the other hand, since Q*f(z) is analytic in IzI < 1, we have

[Q(z)]. =:0. (78)

Now, in view of Step 1, namely: [H(z)], = 0, we may apply (69) in Step 2 to verify that
PM-l(z)B*(z)- Ap+IQ;M(z)B(z)] 0 (9

so that by combining (77), (78), and (79) in (75), we have D(z) = 0. This verifies (74).

13
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Step 4. Let R,(z) be defined as in (59). We claim that

4(z)= C(Z 
80

Indeed, from (74), we have

C(z) = H(z) - Ap+ 1 B(z)/QM(z) (81)

Here, from the relations (69) and (64), it can be shown that

[ ~B*(z)/Q*(z)J. G++dz IBz/Q~ ) [ (Z) 1(2
Therefore, in view of the definitions in (55) and (59), we have obtained (80).

Step 5. We can now complete the proof of the AAK theorem (cf. Theorem 3), for the

special case of real and finite-rank Hankel operators FH, by verifying (56), or equivalently:

sp+1 = IIrH - r, II. (83)

First, we remark that qp-+l(z)/ 1++ (z) is a constant c multiple of a Blaschke product with

jci = 1, so that

__+l( )=1. (84)

Therefore, from (55) and (31), we have

II - 11 = IIFH - r, II (85)

= 11H - plir =
) +1II 111Cp+,(z) S+1

On the other hand, since

[(I-((z) - k= sp] (Z) (86)

8 p+I [t P1 (z)1 1.

6P++1 (Z) Z)

.+i77-+,(z),

14
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we have

r_ FH 6p+1 = (rh - r P) p+1 = sp+inp+i, (87)

so that

IHR 1,?P+1 = SP+lG+" (88)

That is, (sP+ 1 ,(p+i, ?7 +l)) is also a (singular value, singular vectors) pair of r_
Hence, sp+l does not exceed its spectral radius, namely:

+ < H_, II = Il17 -r II. (89)

Therefore, by combining (85) and (89), we have proved (83).

Remark. From (80), it seems that 4 (z) is a rational function in R'M-1. Actually, we
have now proved that 4W,(z) is in 1Z, where p < M - 1. This means that only the p zeros
of B*(z) that lie in IzI < 1 are used to yield Rp. The results in Steps 2, 3, and 4 axe useful
in the following discussion of Kung's model reduction algorithm.

KUNG'S MODEL REDUCTION ALGORITHM

Let H(z) = PM-i(z)/QM(z) be defined as in (60) where PMI(z) and QM(z) are
coprime polynomials with degree (PM-) < degree (QM) = M. Let Q*M(z) be the recip-
rocal polynomial relative to QM(z) as defined in (73). Since H,(z) is in IZ', all the M
zeros of Qm(z) lie in Izi < 1, so that all the M zeros of Q*M(z) lie in Iz1 > 1. That is,

O ( z)-' 2

qo + qlz - 1 + q2z - 2 + (90)QM(Z)

is the reciprocal of a finite Blaschke product.

We need the following notations:

hi h2 ... hM

HM = h2 ...... hM+l (91)
. . .. ooo..... ......

hM ... ... h2M-1

[ qM qM-I ... ql 1
KM = qM+l qm ... q2 (92)

[q2M- q _2M-2 qMJ

0 ... ... 0

HA hi (93)

0 hi ... hM-1

15
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qO 0 ... 0

KA= q "(94)

qM-1 •.. q, qo

where HM, HA are finite Hankel matrices and KM, KA are finite Toeplitz matrices. (Note
that the notations in (90) and (7) agree.)

Algorithm II. (Kung)

(1 ') Solve the generalized eigenvalue problem

(HM - AKM)q = 0 (95)

for {A,, q'}, where {q ,..., qM } are linearly independent and

IAI 12! IA2 1-.._ IAMI. (96)

(20) For 1 < p < M, perform the matrix-vector multiplication:

rP+ I = (Ha - Ap+IKA)qP+I. (97)

(30) Set

rP+ l -(bo,..., bM-1)

qP+l - (ao,...,aM-l) (98)

and compute the singular part

bozM -i + +. + bM- I (99)
p( Z ) -=a o + a21z -+ """- - - iz M -1

In this computation, factorize ao + alz + ... + aM-IzM- l into M - 1 linear factors and
iscard those terms whose roots do not lie in z I < 1. We note that exactly p linear factors,

counting multiplicities, are retained. Now use partial fraction expansion to determine
np(z).)

Proof. Let

hM+l hM+2 ... h2M

HM = hM+2 ... ... h2M+1 (100)
. . • .. . . . . .. .. .. . . . . . . . ., . ..,

L h2M ... ... h3M-I

and

q2M q2M-1 ... qM+I

KM= q2M+1 q2M ... qM+2 (101)
. . . . . . . °. . . . . . . . . . . . . . . . . . ..

q3M-1 q3M-2 ... q2Af

16
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where HM is a finite Hankel matrix and KM a finite Toeplitz matrix. Set

C(z) = bozM-1 + + bM-1
~ DI\... -1 '(102)B(z) = ao z M - 1 +'' + aM-l

so that

n*(z) - aO -. a z - + a M-1 (103)

Then it is straightforward to check that the identity (74) in Step 3 in the proof of AAK's
theorem is equivalent to the matrix system

b0

bM-1

HA K
. 0. ao , ... ao 0

HM KM (104)... a m .._m-,
H~ K M i

0

Also, (104) is equivalent to

[HA - Ap+ 1K,]q(P+l) = r(P+1)
[HM - A1,KMjq (p + 1 ) = 0 (105)

[HM - Ap+,KMlq (P+ l) = 0

where the notations in (98) are used. The second equation in (105) is Step (10) in Algo-
rithm II, while the first equation in (105) is Step (20) in the algorithm. Note that the third

equation in (105) is a consequence of the second equation by the Caley-Hamilton theorem
in matrix theory. Now, the result Rp(z) computed in Step (3*) of the algorithm agrees
with R,(z) in (80); and hence, by AAK's theorem (cf. argument in Step 5 in the above
section), we may conclude that 14(z) satisfies (83).

REFORMULATION OF OPTIMAL HANKEL-NORM RATIONAL MODEL

We have seen that Toeplitz matrices also occur in the computation of the rational
model Rp(z) in Kung's algorithm. In fact, a Toeplitz matrix associated with the transfer
function H(z) can be used to describe Rp(z). Let

17
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0 hi h2 h3 . .'

0 0 h 2 ... (106)T /0 0 0 hi ... (16

. . ...... .........

be an upper triangular infinite Toeplitz matrix with zero main diagonal. As in (61), let
{A2}M denote the (necessarily non-zero) eigenvalues of the rank-M Hankel operator FH
such that JAij = si is the ith singula value of FH, i = 1,...,M. As before, let

xi= = (', U2.... (107)

denote an eigenvector of FH corresponding to the eigenvalue A2, so that (Ci, ra), with
77i = (sgn Ai)xi, is a singular vector pair of ]H corresponding to the singular value si = jAjI
(cf. Eq. (62)). Also, let p(z) be as in (55) and lp(z) = [4p(z)]. be the optimal solution
in best Hankel-norm approximation of H(z) from IZ. Then we have the following result.

Theorem 4. Let H(z) be a transfer function with real coefficients such that its singular
part H,(z) is given as in (60). Then

Rp(z) (z,z 2 .. ;-:x,+ ] (108)

Proof. From the equation rHxp+l - Ap+lxp+l, we have

h+t_aUP+)=, P+u P+ ) , e1,2,...; (109)

and hence, by (65), it follows that

sp+P+,(z) = AP+ 1 ZUi z = hi+t-u+1) z (110)
2= =1 \/=1

This yields:

H.(z) ++,(z) - sp+lq;+, (z) (111)

Since ++(z) = (1,z,z 2 ,...).xt+, we have

18
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7,+, (z) (1,z, z2 ,...). T xP+IH,(z) - sP+, ++,z (1, Z, Z2,.... Xp~

so that by (59) and (55), which was proved by AAK [3] in general and in this report for
our special case, we have obtained (108).

TRUNCATED HANKEL OPERATORS

To apply Kung's algorithm, it is essential to start with an ARMA model. However. as
we mentioned before, in all practical purposes in underwater acoustic signal processing. the
sequence {hn } of unit impulse responses which may be computed from input/output inea-
surements (cf. Eqs. (16) and (17), for instance), is both physically and numerically noisy.
Hence, the measured transfer function H(z) cannot be ARMA or the Hankel operator FH
has infinite rank. In a recent work [7], the truncated (infinite) Hankel operators

hi h 2  ... h, 0

h2 . .

=H (112)

hn

0 0

are introduced and optimal Hankel-norm approximants RF(z) of

Hn(z)= hiz- (113)
i=-00

are used to replace the optimal Hankel-norm approximant 1?P(z) of

H(z)= hiz-' (114)

1= -o

Recall that this means:

((n)("+ = IIH.(z) - R (z)llr = inf IIH(z) - R(z)llr
• R(z)E ; (115)

sp+i = IIH(z) - R(z)llr inf IIH(z) - R(z)llr

where s,() > s "2 > ... are the singular values of rH, = rn,. It is at least intuitively clear
that

(+' ) sp+l as n o- oc; (116)
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and in [8], we have proved much more.

Theorem 5. For each p, there exists a positive constant CP, such that

R(z)- Rp(z)IL-(jZI=1) !5 Cp IhkI (117)
k=n+l

+ +Ihi- + 1: .:jjI
k/n 1 k=n+2 j=k

Hence, if {h 1 I decays to zero very rapidly (as is the case in most underwater acoustic

experiments), we know that Rn(z) converges uniformly on IzI 1 very rapidly to the

optimal Harikel-norm rational model Rp(z). In the next section, we will give al efficient

algorithm for computing Rn(Z).

ALGORITHM FOR OPTIMAL RATIONAL MODEL

Let {hn }, n= 1,2,..., be a sequence of unit impulse responses that satisfies

Ih/I < 00 (118)

(Note that H(z) = hnzn is not necessarily a rational model.) Given a tolerance f > 0.
we now give an algorithm for computing a stable (strictly proper) rational function R(Z)
such that

IH(z) - Rp(z)Ilr < . (119)

The degree p will be chosen to be the smallest possible, under the limitation of this method.

Algorithm III.

(10) Choose an El, 0 < El < e (e.g. e1 = 1), and the smalest positive integer M1 .
such that

E 1h1 < E, (120)
n=Mi+l

where hM, # 0.

(20) Find the singular values

1) >90) > . > (1)> 0 (121)1 -- 2 M,
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of the finite Hankel matrix

hi h2 ... hM,
F1) h h2

=H (122)
• "' 0

hM,

and choose the smallest positive integer p, < M, such that

sM < C - El. (123)Pi -

(One can find the eigenvalues of Fr ) and then take their absolute values to determine the
singular values.)

(30) If p, does not exist (i.e., if sm, > 6 - 61), return to (1 ° ) with EI replaced bY

LI

E2 = - (124)
2

and M, replaced by 112, so chosen that

E I, (125)
n=M 2+1

and hjl 2 - O.M 2 > MI.

Repeat (20) by finding the singular values

(2 (2 ( 2 >  0 (126)

of the Han kel matrix
hi h2  ... hM2

(2) h2
= .1(127)

hM2 0

and choosing the smallest p2 < M2 such that

s (2) e 2
P2 62 (128)

(40) If this fails (i.e. if s (2 > e - 62), repeat (30) with
62

E3 -- "2 (129)
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etc. Suppose that the first time this procedure succeeds is at the kth iteration. That is, k
is the smallest integer such that

(k)1
s M k < C -k = - el, (130)

where
- " - M > 0 (131)

are the singular values of the Mk-dimensional square Hankel matrix

h, h2  ... hMk
(k) h2 "
1H  (132)

with hM, 5 0, and
00 1

IhI <k =- 2 kE1. (133)
n=Mk -- I

Let Pk be the smallest integer such that (k) < -_k, and set

P = Pk 1; (134)

so that
(k) < sk) (k) < 1 (135)M, - pA-1 = Sp* - E 2k-1E

(50) Compute the eigenvalue-eigenvector pair

(Ap+l, qP+l) (136)

(k) (k)of )H , where IAp+iI = sp+].

(60) Perform the matrix-vector multiplication

0 ... ... 0

r+ K ; hi qP+I. (137)

0 hi ... hM,-IJ

(70) Write:

f 1+1 =(bo,...,bM-I) (138)

qP+l = (ao, .-am.,
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and compute the singular part

R,(z) = I b0zMk- l + + bm._ (139)
Lao +a1'z+ -- + aM,- IzM - I,

by using partial fractions, retaining only the p poles in IzI < 1, counting multiplicities.
Then Rp(z) E T and satisfies

IIH(z) - Rp(z)llr < 6. (140)

Proof. We first remark that det r() = (-1)Mkh 0 so that all the singular values

(k) Mk areta lltesnulrvle
s k)  = 1,., Mk, are positive (nonzero). From a well-known result in operator theory
(cf. [13]), we have

(k) F( ) (41max Is, - s1i < I1H - (141)
l<_i<Mk

On the other hand, it follows from the definition of r(k) and the second inequality in (23)
that

00

IIHirH- Hl < IhI. (142)
n=Mk+l

Hence, by combining (141), (142), and (133), we obtain

max Is- si < - ei'. (143)
1 <i<Mk

Now, since {h,} satisfies (118), we have s n -- 0 by (52); so that in view of (143) (where Mk
necessarily tends to infinity, as k -+ oc), it follows that (130) is satisfied for all sufficiently
large values of k. This shows that the iteration procedure (1°)-(4 °) converges.

Next, from the definition of FH in (132), we note that the corresponding rational

symbol of F) is

M - hzk-1 -+-" + hM _ P(z)
--1 zM- Q(z)' (144)

where degree (P) < degree (Q) = Mk and Q(z) = zMk. Since the reciprocal polynomial
of Q(z) is Q*(z) = 1, we have

Q*(z) ZMb" (145)

QWz

Hence, using the notations from (92) and (94) with M replaced by Mk, we have:

1 O -
KM ,KA =[0]. (146)

011
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Also, again from the definition of Fr in (132), using the notations from (91) and (93)
with M " Mk, we have:

HMA --- ) (147)

and

0 ... ... 0

HA= hi (148)

0 hi ... hM -I J

This yields

(HM, - AKM,)q = r ()q - Aq
H (149)

(HA - AKA)q = Haq.

Hence, Step (10) in Kung's algorithm (i.e. Algorithm II) is equivalent to

H()qP+1 = Ap+lq P+ I  (150)

and Step (20) in Kung's algorithm (i.e. Algorithm II) is equivalent to

r + = HzqP+l. (151)

Since (150) is the same as Step (50) and (151) is the same as Step (60) in Algorithm 111,
we have proved that Rp(z), as defined in (139), satisfies

IIRp(z) - Hk(z)Ilr = s_() (152)

where Hk(z) is defined in (144). Hence, by applying the triangle inequality and the infor-
mation from (142), (133), (152), and (135) consecutively, we have

IIH(z) - Rp(z)lr = Irn - r, ll (153)
_ IFH - r )l + iIr ) - rRPll

_ y1 lh.1 + IlRp(z) - Hk(z)llr
n=Mj,+1

C, M +S M
1 (k)

< + ( 1 1) = E

This establishes (140).

Remarks. Algorithm III can be easily adapted and modified to produce a possibly lower
degree rational model Rp(z) that satisfies the design criterion (119). In fact, as a conse-
quence of Theorem 5, we can theoretically obtain the lowest degree optimal Hankel-norm
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rational model Rp(z) in the limiting case. One suggestion is to repeat this algorithm for
various values of ej, such that

e
el =ye, f- 1, ,L-1, (154)

for a suitably large integer L. As to the modification of the algorithm itself, one may wish
to try various values of ej, i = 2,3,..., k, instead of - 2 = -' 1 ,- 3 = I2 Ii,- .. ,Ek

Ck-i = 2-r-lEj as suggested in (124), (129), and (130). The only restriction is that
E1 > E2 > 63 > ... > Ek. The smaller the values of e - Et-1, £ = 2,...,k, chosen,
the better the chance is to find the lowest degree rational model Rl(z). Of course, more
computing time is required.

We also remark that although the Hankel-norm specification in (119) is not as desirable
as the supremum (or uniform) norm specification, it is very close to it, in view of Nehari's
theorem (i.e. Theorem 2), since the only thing that can go wrong is an H' (or analytic)
additive factor which only contributes to noncausal information. In addition, the Hankel-
norm specification is more desirable than the L2 norm (or RMS) specification, since it
follows from (31) that

IIH(z) - Rp(z)1L2 < H(z) - Rp(z)Ilr, (155)

where L 2 = L 2(IzI = 1) and H(z) is assumed to be causal, in the sense that H(z) = g,(z)
or

00

H(z) = h,,z, (156)
n=1

where {h,} satisfies (118). Hence, as a consequence of (154), if Rp(z) satisfies the design
criterion IIH(z) - Rp(z)Ijr _ e, it also satisfies the design criterion 11H(z) - Rp(z)1L2 < E.
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APPENDIX

Since it is important to be able to relate a rational model
oo P(z )

H(z) = 1 h,,z-" -. , (157)
n=1 Q(z)'

where P(z) and Q(z) are coprime polynomials satisfying

degree(P) < degree(Q) = (158)

with the infinite Hankel matrix

hi h 2 h 3
h 2 h 3  (159)

FH=h3

we include in this Appendix a proof of Kronecker's theorem given as Theorem 1 on page
2. To be consistent with the notation in (6), let

i = (hi, hi+,,...) (160)

denote the ith column vector of rH. We also need the notation

H = [. ] (161)
hi+m-1 ... hi+2M-2

for the M-dimensional cofactors of FH with leading entry hi. Then

H - HM (162)

is the principle cofactor of rH of dimension M introduced in (7) and (91). We have the
following preliminary result.

Lemma 1. The infinite Hankel matrix FH has finite rank = k if and only if the first
k column vectors 71 . , .Y of FH are linearly independent and there exist k numbers
c1 ,... ,ck such that

k

^ =k+t = cii+t-l, £ = 1,2 ..... (163)

Fhrthermore, if rank FH = k < oo, then the principal cofactor H1 = Hk is a nonsingular
square matrix.

Proof. By definition, rank FH < oo if and only if T H has only a finite number of linearly
independent columns. Suppose rank FH < oo. Let 71-,. . . , 7r be linearly dependent; and
let k be the largest integer, 1 < k < r, such that 71-,... ,k are linearly independent. Then
since 71. ., .k+ are linearly dependent, there exist constants C1..., ck such that

k

Yk+i= Zc,, (164)
i27
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This is (163) for f = 1. Note that both sides of (164) are infinite dimensional vectors. By
deleting the first (t - 1) entries of these vectors, (164) becomes (163) for f = 2,3,....
That is, each ith column of FH, for i > k, is a linear combination of its previous k
columns; and hence, by using (163) repeatedly, each 7j, i > k, is a linear combination of
3'1,..., 7k- So, for finite rank rH, its rank is given by the largest k for which Y1.,... ,7k
are linearly independent. Of course, rank FH = 00 if and only if such a k does not exist.
This proves the first statement in the lemma. Now, suppose that rank FrH = k < oc.
By repeated applications of (163), it is clear that every minor det H', i = 2,3,..., is a
constant multiple of the principle minor det H1. Recall that if rank Fr = k, then FrH has
some k dimensional cofactor with nonzero determinant, (i.e. det Hk -* 0 for some i), so
that det Hk = det H' # 0.

We are now ready to prove Theorem 1. Suppose that H(z) in (157) satisfies (158).
Then by dividing both the numerator and denominator by the leading coefficient of Q(z),
we may write

P(z) = blzMl- +-.. + bM
Q~z)zM~az~l(165)Q(z) -- zM Jr ajz M - 

+r. +r am

so that (157) is equivalent to

(hiz - 1 + h2z - 2 + "..)(zM + alzM - + - +aM) = bzM - 1 +" + bM. (166)

Hence, by equating the coefficients of zM-1,..., z, 1, we have

b = hi
b2 = h2 + hla, (167)
...... .. o°.......... .... ...... °.... .

bM = hM + hM-lal + " -- + hiaM-1

and by equating the coefficients of z - 1, z- 2,..., we have
M

hM+l + E aihM-i+l - 0
i=1

hM+2 + E aihM-i+2 = 0

i=1

Now, if we define

ci = -aMi+l, I = 1,..., M, (169)

then we observe that (168) is equivalent to

M

tM+I = E -ai"M-i+l (170)
3=l

-"E Ci'Yi'

j=1
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which, by the same argument as the proof of Lemma 1, yields

M

M+e= ci+-1, e= 1,2,. (171)

Since P(z) and Q(z) are coprime and the leading coefficient of Q(z) is normalized to be
1, the set of coefficients {a,}, and hence {ci}, in (170) is unique. That is, Y1,.... ,Y'M are
linearly independent. Hence, by Lemma 1, rank rH = M.

Conversely, suppose that rank F.,j = M. Then by Lemma 1, we can find coefficients
ci,... ,CM, such that (171) holds. Hence, defining aj,... ,aM and bl,...,bM by (169) and
(167), respectively, we have both (167) and (168), which yields (166); or equivalently, we
have H(z) P(z)/Q(z) by using (165) to define P(z) and Q(z). The linear independence
of -y,.....yM is equivalent to the uniqueness of {ai} and {b, i = 1,...,M, which, in
turn, implies that P(z) and Q(z) are coprime.

29


